张娜

Google Scholar

特聘副教授、副研究员,

生物医学工程

前美国洛杉矶西达赛奈医学中心 访问学者

邮箱:na.zhang@siat.ac.cn

所在单位:深圳先进院医工所

个人简介

张娜,博士,中国科学院深圳先进技术研究院副研究员,博士生导师、广东省杰出青年基金获得者、国家重点研发计划课题负责人、深圳市孔雀计划海外高层次人才、深圳市高层次专业人才。曾在美国加州大学国际心血管顶级实验室进修学习。研究方向为多模态医学成像及医学图像处理,及其在脑血管病和肿瘤的应用研究。与国内多家三甲医院和国产高端医疗器械龙头企业建立了密切的科研合作关系,面向解决国产高端医疗产业和临床医学中的实际问题。实现了脑卒中斑块三维磁共振成像技术前沿科学突破、研发了全球首款脑卒中智能预警分析软件,并应用到我国首型3T高端磁共振设备实现了大规模产业落地,现已成为其高端临床应用的标配和市场竞争的亮点产品,在全国百余家大型三甲医院推广使用,为脑血管病的早期精准诊断和规模化筛查发挥了重要作用。研究成果先后获得北京市科技进步一等奖等多个奖项,共发表本领域SCI权威期刊和会议论文100余篇,多次获邀在国际医学磁共振年会上做报告介绍最新研究成果,并获得大会颁发的《Summa Cum Laude》、《Magna Cum Laude》等优秀奖项。先后授权美国/中国发明专利10余项,并实现转移转化。先后主持国家重点研发计划课题、国自然青年、广东省杰青/面上、深圳市基础研究等各级科研项目多项;同时作为核心骨干先后参与国家重大科研仪器研制项目、科技部数字诊疗装备研发项目、国家自然科学基金重点项目及产业化项目多项。


学习工作经历

学习经历:

2002.9-2006.6,中南大学,生物医学工程专业,大学本科

2006.9-2009.5,中南大学,生物医学工程专业,硕士研究生

2013.9-2018.6,中国科学院大学,模式识别与智能系统专业,博士研究生


工作经历:

2009.07-至今,中国科学院深圳先进技术研究院,生物医学与健康工程研究所,历任研究实习员、助理研究员、副研究员

2015.11-2016.11,美国西达赛奈医学中心,生物医学成像研究所,访问学者



研究领域

医学MRI、PET/MR多模态成像及在脑血管病和肿瘤的临床应用研究、医学图像处理和人工智能医学影像大数据分析

所获荣誉(或科研成果)

·国际影响力

Na Zhang.Three Dimensional Intra- and Extra-cranial Arterial Vessel Wall Joint Imaging in Patients with ischemic stroke. Joint Annual Meeting ISMRM-ESMRMB 2018, 16-21 June 2018, Paris, France,oral presentation,p.377.《ISMRM MagnaCum LaudeAward

Na Zhang. Whole-Brain Vessel Wall MR Imaging Using Inversion- Recovery Prepared SPACE: Reproducibility and Accuracy of Intracranial Artery Morphology. ISMRM 25thAnnual Meeting, 22-27 April 2017, Hawaii, USA,oral power pitch presentation,p.333.


·所获荣誉


1.2023年粤港澳大湾区高价值专利培育布局大赛金奖“脑卒中斑块成像及智能分析”(排名第1/6)

2.第25届中国国际高新技术成果交易会优秀产品奖“脑血管斑块一站式智能分析系统”(中国科学院深圳先进技术研究院,张娜,2023)

3.2023年吴文俊人工智能技术发明二等奖“高端医疗装备智能成像关键技术及应用”(排名第3/5)

4.2023年中国图象图形学学会技术发明二等奖“多模态医疗装备关键成像技术及应用”(排名第3/5)

5.2023年北京市科技进步一等奖“脑血管高危斑块及血栓磁共振精确定量检测关键技术与推广应用”(排名第5/10)

6.2022年新疆自治区科技进步一等奖“基于高分辨磁共振管壁成像的缺血性卒中病因学研究”(排名第3/6)

7.2020年度国际医学磁共振summa cum laude奖

8.2019年度国际医学磁共振E.K.Zavoisky奖

9.2018年度国际医学磁共振magnacum laude奖

10.2018年中国电子学会科技进步一等奖“脑血管磁共振计算成像技术及应用”(排名第8/13)


·科研成果

在研项目情况:

l国家重点研发计划课题“多核素磁共振成像设备研发及多模态定量成像方法研究”(2023YFC3402802),2023.12-2028.11,323.6万(主持)

l广东省自然科学基金(卓越青年团队项目)“基于数据模型双驱动的PET/MR成像新技术研发”(2024B1515040018),2024.1-2027.12,300万,(团队核心成员)

l科技部中央引导地方科技专项“新疆地区缺血性脑卒中风险筛查及多模态影像人工智能研究服务平台建设”(ZYYD2023D02),2023.1-2024.12,300万(合作方负责人)

l广东省自然科学基金(杰出青年项目)“高时空分辨PET/MR定量成像方法研究”(2023B1515020002),2023.1-2026.12,100万(主持)


·近三年代表性文章:

1.Yikang Li, Yulong Qi, Zhanli Hu, Yixiang Wang, Shuai Shen, Sen Jia, LeiZhang,Wenjing Xu, Zongyang Li, Dong Liang, Xin Liu, Hairong Zheng, Guanxun Cheng,Na Zhang*. A novel automatic segmentation method directly based on MRI K-space data for auxiliary diagnosis of glioma.Quantitative Imaging in Medicine and Surgery2024;14(2):2008-2020.

2.Minghan Fu#,Na Zhang#, Zhenxing Huang, Chao Zhou, Xu Zhang, Jianmin Yuan, Qiang He, Yongfeng Yang, Hairong Zheng, Dong Liang, Fang-Xiang Wu, Wei Fan, Zhanli Hu*. OIF-Net: An Optical Flow Registration-Based PET/MR Cross-Modal Interactive Fusion Network for Low-Count Brain PET Image Denoising.IEEE Transactions on Medical Imaging2023 Dec 14. doi: 10.1109/TMI.2023.3342809.

3.Junhui Huang, Shangpo Yang, Liyan Zou, Yingying Chen, Long Yang, Bingyu Yao, Zhenxing Huang, Yihong Zhong, Zhou Liu*,Na Zhang*.Quantitative pharmacokinetic parameter Ktrans map assists in regional segmentation of nasopharyngeal carcinoma in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).Biomedical Signal Processing and Control2024; 87:105433.

4.Zhou Liu#, Bingyu Yao#, Jie Wen, Meng Wang, Ya Ren, Yumin Chen, Dong Liang, Xin Liu, Hairong Zheng, Dehong Luo*,Na Zhang*.Voxelwise mapping of DCE-MRI time-intensity-curve profiles enables visualizing and quantifying hemodynamic heterogeneity in breast lesions.European Radiology2024 Jan;34(1):182-192.

5.Zhenxing Huang#, Wenbo Li#, Yunling Wang, Zhou Liu, Qiyang Zhang, Yuxi Jin, Ruodai Wu, Guotao Quan, Dong Liang, Zhanli Hu,Na Zhang*. MLNAN: Multi-level noise-aware network for low-dose CT imaging implemented with constrained cycle wasserstein generative adversarial networks.Artificial Intelligence in Medicine2023; 143:102609.

6.Zhenxing Huang#, Han Liu#, Yaping Wu#, Wenbo Li, Jun Liu, Ruodai Wu, Jianmin Yuan, Qiang He, Zhe Wang, Ke Zhang, Dong Liang, Zhanli Hu, Meiyun Wang*,Na Zhang*. Automatic brain structure segmentation for 18F-FDG PET/MR images via deep learning.Quantitative Imaging in Medicine and Surgery2023; 13(7):4447-4462.

7.MuDu, Da Zou, Peng Gao, Zhongxian Yang, Yanzhen Hou, Liyun Zheng,Na Zhang*, Yubao Liu*.Evaluation of a continuous-time random-walk diffusion model for the differentiation of malignant and benign breast lesions and its association with Ki-67 expression.NMR in Biomedicine2023 Aug;36(8):e4920.

8.Zhou Liu#, Fuliang Lin#, Junhui Huang, Xia Wu, Jie Wen, Meng Wang, Ya Ren, Xiaoer Wei, Xinyu Song, Jing Qin, Elaine Yuen-Phin Lee, Dan Shao, Yixiang Wang, Xiaoguang Cheng, Zhanli Hu, Dehong Luo,Na Zhang*. A classifier-combined method for grading breast cancer based on Dempster-Shafer evidence theory.Quantitative Imaging in Medicine and Surgery2023 May 1;13(5):3288-3297.

9.Hao Shen#, Pin He#, Ya Ren, Zhengyong Huang, Shuluan Li, Guoshuai Wang, Minghua Cong, Dehong Luo, Dan Shao, Elaine Yuen-Phin Lee, Ruixue Cui, Li Huo, Jing Qin, Jun Liu, Zhanli Hu, Zhou Liu*,Na Zhang*.A deep learning model based on the attention mechanism for automatic segmentation of abdominal muscle and fat for body composition assessment.Quantitative Imaging in Medicine and Surgery2023 Mar 1;13(3):1384-1398.

10.Zhenghui Xiao#, Haihua Cai#, Yue Wang, Ruixue Cui, Li Huo, Elaine Yuen-Phin Lee, Ying Liang, Xiaomeng Li, Zhanli Hu, Long Chen*,Na Zhang*. Deep learning for predicting epidermal growth factor receptor mutations of non-small cell lung cancer on PET/CT images.Quantitative Imaging in Medicine and Surgery2023 Mar 1;13(3):1286-1299.

11.Zhenxing Huang#, Zhou Liu#, Pin He, Ya Ren, Shuluan Li, Yuanyuan Lei, Dehong Luo, Dong Liang, Dan Shao, Zhanli Hu,Na Zhang*. Segmentation-guided Denoising Network for Low-dose CT Imaging.Computer Methods and Programs in Biomedicine2022; 227:107199.

12.Hanyu Sun#, Yongluo Jiang#, Jianmin Yuan, Haining Wang, Dong Liang, Wei Fan, Zhanli Hu,Na Zhang*. High-quality PET image synthesis from ultra-low-dose PET/MRI using bi-task deep learning.Quantitative Imaging in Medicine and Surgery2022;12(12):5326-5342.

13.Liwen Wan#, Haoxiang Li#, Lei Zhang, Shi Su, Cheng Wang, Baochang Zhang, Dong Liang, Hairong Zheng,Xin Liu*,Na Zhang*. Automated Morphologic Analysis of Intracranial and Extracranial Arteries Using Convolutional Neural Networks.British Journal of Radiology2022Aug 26; 20210031.

14.Wenjing Xu#, Xiong Yang#, Yikang Li, Guihua Jiang, Sen Jia, Zhenhuan Gong, Yufei Mao, Shuheng Zhang, Yanqun Teng, Jiayu Zhu, Qiang He, Liwen Wan, Dong Liang, Ye Li, Zhanli Hu, Hairong Zheng, Xin Liu,Na Zhang*. Deep Learning based Automated Detection of Arterial Vessel Wall and Plaque on MR Vessel Wall Images.Frontiers in Neuroscience2022 Jun 1;16:888814.

15.Na Zhang, Xinfeng Liu, Jiayu Xiao, Shlee S Song, Zhaoyang Fan. Plaque Morphologic Quantification Reliability of 3D Whole-Brain Vessel Wall Imaging in Patients with Intracranial Atherosclerotic Disease: A Comparison with Conventional 3D Targeted Vessel Wall Imaging.Journal of Magnetic Resonance Imaging2021 Jul; 54(1):166-174.

16.Na Zhang, Jinhao Lyu, Lijie Ren, Lei Zhang, Zhangyan Fan, Liwen Wan, Ye Li, Dong Liang, Hairong Zheng, Xin Liu. Arterial Culprit Plaque Characteristics Revealed by Magnetic Resonance Vessel Wall Imaging in Patients with Single or Multiple Infarcts.Magnetic Resonance Imaging2021; 84:12-17.

17.Juan Gao, Qiegen Liu, Chao Zhou, Weiguang Zhang, Qian Wan, Chenxi Hu, Zheng Gu, Dong Liang, Xin Liu, Yongfeng Yang, Hairong Zheng, Zhanli Hu,Na Zhang*. An improved patch-based regularization method for PET image reconstruction.Quantitative Imaging in Medicine and Surgery2021; 11(2):556-570.

18.Tingting Zhu, Lijie Ren, Lei Zhang, Yinghui Shao, Liwen Wan, Ye Li, Dong Liang, Hairong Zheng, Xin Liu,Na Zhang*. Comparison of plaque characteristics of small and large subcortical infarctions in the middle cerebral artery territory using high-resolution magnetic resonance vessel wall imaging.Quantitative Imaging in Medicine and Surgery2021; 11(1):57-66.

19.Lin Jia#, Xia Wu#, Qian Wan, Liwen Wan, Wenxiao Jia*,Na Zhang*. Effects of Artery Input Function on Dynamic Contrast-Enhanced MRI for determining Grades of Gliomas.British Journal of Radiology2021; 94(1119):20200699.

20.Yingjie Xu, Zhijian Li, Xu Zhang, Wei Fan, Chao Zhou, Dashun Que, Jianmin Yuan, Qiang He, Dong Liang, Xin Liu, Hairong Zheng, Zhanli Hu,Na Zhang*.Low-dose PET image denoising based on coupled dictionary learning.Nuclear Instruments and Methods in Physics Research A.2021; 1020:165908


·成果转化情况:

1.郑海荣、刘新、张娜、张磊、贾琳、贾文霄、邹超、梁栋、万丽雯、赵世华,磁共振血管壁成像方法、装置、设备及存储介质,发明专利,申请日期:2018-07-23,申请号:201810813453.4,授权日期:2020-06-12,专利号:ZL201810813453.4(已转让上海联影公司,转让金额68.43万元

2.郑海荣、刘新、张娜、张磊、贾琳、贾文霄、邹超、梁栋、万丽雯、赵世华,血管壁成像中脑脊液信号的抑制方法、装置、设备及介质,发明专利,申请日期:2018-07-23,申请号:201810813443.0,授权日期:2020-05-22,专利号:ZL201810813443.0(已转让上海联影公司,转让金额72.87万元